Rotary Actuator

Smooth Operation with Free Backlash

Direct Load Mounting Table

High Reliable **Bearing Adopted**

Adjustable Swing Angle Easy Adjustment at Start & Stop **Positions**

Two Sensor Switches (Optional)

3 or 4-Stop position

Innovative for Pneumatic Industry

Hollow Shaft

Available Inner Wiring & Piping

Swivel Joint

Free from swinging Piping

4-Way Mounting

Front mounting Rear mounting **Bottom mounting** Through mounting

RT01 Series (D)

Model Code No.

RT01 - 18 D - α + β

Series Name

Cylinder Bore 18: 18mm

22:22mm

Stop Position Type

D: 3 or 4 stop position type

Sensor switch:

Refer to "Selection from New-Era Sensor Switch" (Page 265)

Model Examples

Internal Structure

Parts List

No.	Name	Material	No.	Name	Material	
1	Main Body	Aluminium Alloy	17	O Ring	NBR	
2	Head Cover	Aluminium Alloy	18	O Ring	NBR	
3	Piston Rod	Carbon Steel	19	O Ring	NBR	
4	Piston	Stainless Steel	20	Hexagon Slotted Bolt	Carbon Tool Steel	
5	Magnet	Resin	21	Hexagon Slotted Bolt	Carbon Tool Steel	
6	Pinion Cover	Mild Steel	22	Key	Carbon Steel	
7	Hexagon Nut	Mild Steel	23	Hexagon Slotted Screw	Carbon Tool Steel	
8	Plug	Brass	24	Spring Washer	Carbon Steel	
9	Gasket	Mild Steel+NBR	25	Steel Ball	Bearing Steel	
10	Tightening Nut	Brass	26	Bearing	Bearing Steel	
11	Pinion Rod	Carbon Steel	27	Bearing	Bearing Steel	
12	Rack	Stainless Steel	28	Fastener Seal	Mild Steel +NBR	
13	Rack Piston	Carbon Steel	29	Packing	NBR	
14	Table (Swivel Joint Upper)	Aluminium Alloy	30	Packing	NBR	
15	Case (Swivel Joint Lower)	Aluminium Alloy	31	Wear Ring	Teflon	
16	O Ring	NBR	32	Wear Ring	Teflon	

RT01 Series (D)

Specifications

			RT01-18D- $\alpha + \beta$	RT01-22D- $\alpha + \beta$		
Stop Positions			3 or 4			
Cylinder Bore	(n	nm)	18+26 22+30			
Fluid			Air			
Operating Pressure	(N	(Pa)	0.35~0.7			
Proof Pressure (MPa)			1.05			
Ambient Temperaure (C)			5~60 mmss ss			
Standard (°)	3-stop	type	180≧2α≧30			
Swing Angle	4-stop	type	180≧2 <i>α</i> + <i>β</i>			
Adjustable (°)	90° typ	ре	30~95			
Swing Angle	180° typ	ре	120~185			
Detecting	90° typ	ре	20~95			
Swing Angle	180° typ	ре	20~185			
Cushion			None			
Permissible Kinetic Energy (J)			0.07	0.11		
Theoretical Torque * (N·m)			2.8×Operating pressure	4.2×Operating pressure		
Permissible Moment (N·m)			6.5	10		
Permissible Radial Load (N)			185	430		
Permissible	(Pull)	N	175	400		
Thrust Load	(Push)	N	260	600		
Port Size			M5×0.8			
Main Body (a)	90° type		1,630	2,570		
Weight (g)	180° type		1,630	2,570		
Inner Volume (one cycle)	(c	c)	18+37 31+58			

For the swing angle beyond the Standard Swing Angle (180°), consult New-Era Co., Ltd.

The above Adjustable Swing Angle is recommendatory.

The above "Detecting Swing Angle" is shown the Swing Angle Range datected by Sensor Switches.

A speed controller is recommended to control a swing speed.

■Effective Torque

^{*} Theoretical Torque can be calculated by the following formula using Operating Pressure (MPa). (Example): Theoretical Torque (N·m) = (Coefficient in the above list) × (Operating Pressure, MPa)

■Installation Examples

	Specifiocations of Mounting holes / thread						
	At Bottom side	At Front (A)	At Front (B)	At Rear side			
RT01-18D	4×M5×0.8 Depth 7	2×M10×1.5 Through Counterbored		2×M10×1.5 Through			
RT01-22D	4×M6×1 Depth 8			2×M10×1.5 Through			

RTO1 Series (D)

Dimensions

Weight

RT01-18D 1,630g

Unit: mm

Dimensions

Unit: mm

RT01-22D Weight 2,570g

